Limits of Boolean Functions over Finite Fields
نویسنده
چکیده
In this thesis, we study sequences of functions of the form Fp → {0, 1} for varying n, and define a notion of convergence based on the induced distributions from restricting the functions to a random affine subspace. One of the key tools we use is the recently developed theory of ‘higher order Fourier analysis’, where the characters of standard Fourier analysis are replaced with exponentials of higher degree polynomials. This is not a trivial extension by any means, but when the polynomials are chosen with some care, the higher order decomposition can be taken to have properties analogous to those of the classical Fourier transform. The result of applying higher order Fourier analysis in this setting is the necessity to determine the distribution of a collection of polynomials when they are composed with some additional linear structures. Here, we make use of a recently proven equidistribution theorem, relying on a near-orthogonality result showing that the higher order characters can be made orthogonal up to an arbitrarily small error term. With these tools, we prove that the limit of every convergent sequence of functions can be represented by a limit object which takes the form of a certain measurable function on a group we construct. We also show that every such limit object arises as the limit of some sequence of functions. These results are in the spirit of analogous results which have been developed for limits of graph sequences. A more general, albeit substantially more sophisticated, limit object was recently constructed by Szegedy in [Sze10].
منابع مشابه
Some Results on Bent-Negabent Boolean Functions over Finite Fields
We consider negabent Boolean functions that have Trace representation. We completely characterize quadratic negabent monomial functions. We show the relation between negabent functions and bent functions via a quadratic function. Using this characterization, we give infinite classes of bent-negabent Boolean functions over the finite field F2n , with the maximum possible degree, n 2 . These are ...
متن کاملClassical Wavelet Transforms over Finite Fields
This article introduces a systematic study for computational aspects of classical wavelet transforms over finite fields using tools from computational harmonic analysis and also theoretical linear algebra. We present a concrete formulation for the Frobenius norm of the classical wavelet transforms over finite fields. It is shown that each vector defined over a finite field can be represented as...
متن کاملStructure of finite wavelet frames over prime fields
This article presents a systematic study for structure of finite wavelet frames over prime fields. Let $p$ be a positive prime integer and $mathbb{W}_p$ be the finite wavelet group over the prime field $mathbb{Z}_p$. We study theoretical frame aspects of finite wavelet systems generated by subgroups of the finite wavelet group $mathbb{W}_p$.
متن کاملClassical wavelet systems over finite fields
This article presents an analytic approach to study admissibility conditions related to classical full wavelet systems over finite fields using tools from computational harmonic analysis and theoretical linear algebra. It is shown that for a large class of non-zero window signals (wavelets), the generated classical full wavelet systems constitute a frame whose canonical dual are classical full ...
متن کاملAuthentication codes based on resilient Boolean maps
We introduce new constructions of systematic authentication codes over finite fields and Galois rings. One code is built over finite fields using resilient functions and it provides optimal impersonation and substitution probabilities. Other two proposed codes are defined over Galois rings, one is based on resilient maps and it attains optimal probabilities as well, while the other uses maps wh...
متن کاملConstruction of Linear Codes Having Prescribed Primal-dual Minimum Distance with Applications in Cryptography
A method is given for the construction of linear codes with prescribed minimum distance and also prescribed minimum distance of the dual code. This works for codes over arbitrary finite fields. In the case of binary codes Matsumoto et al. showed how such codes can be used to construct cryptographic Boolean functions. This new method allows to compute new bounds on the size of such codes, extend...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014